Lower Bounds on Complexity of Lyapunov Functions for Switched Linear Systems

We show that for any positive integer $d$, there are families of switched linear systems—in fixed dimension and defined by two matrices only—that are stable under arbitrary switching but do not admit (i) a polynomial Lyapunov function of degree $\leq d$, or (ii) a polytopic Lyapunov function with $\leq d$ facets, or (iii) a piecewise … Read more

Stability of Polynomial Differential Equations: Complexity and Converse Lyapunov Questions

We consider polynomial differential equations and make a number of contributions to the questions of (i) complexity of deciding stability, (ii) existence of polynomial Lyapunov functions, and (iii) existence of sum of squares (sos) Lyapunov functions. (i) We show that deciding local or global asymptotic stability of cubic vector fields is strongly NP-hard. Simple variations … Read more

Complexity of Ten Decision Problems in Continuous Time Dynamical Systems

We show that for continuous time dynamical systems described by polynomial differential equations of modest degree (typically equal to three), the following decision problems which arise in numerous areas of systems and control theory cannot have a polynomial time (or even pseudo-polynomial time) algorithm unless P=NP: local attractivity of an equilibrium point, stability of an … Read more

Algebraic Relaxations and Hardness Results in Polynomial Optimization and Lyapunov Analysis

The contributions of the first half of this thesis are on the computational and algebraic aspects of convexity in polynomial optimization. We show that unless P=NP, there exists no polynomial time (or even pseudo-polynomial time) algorithm that can decide whether a multivariate polynomial of degree four (or higher even degree) is globally convex. This solves … Read more

On the Difficulty of Deciding Asymptotic Stability of Cubic Homogeneous Vector Fields

It is well-known that asymptotic stability (AS) of homogeneous polynomial vector fields of degree one (i.e., linear systems) can be decided in polynomial time e.g. by searching for a quadratic Lyapunov function. Since homogeneous vector fields of even degree can never be AS, the next interesting degree to consider is equal to three. In this … Read more

A Complete Characterization of the Gap between Convexity and SOS-Convexity

Our first contribution in this paper is to prove that three natural sum of squares (sos) based sufficient conditions for convexity of polynomials via the definition of convexity, its first order characterization, and its second order characterization are equivalent. These three equivalent algebraic conditions, henceforth referred to as sos-convexity, can be checked by semidefinite programming … Read more

Joint Spectral Radius and Path-Complete Graph Lyapunov Functions

We introduce the framework of path-complete graph Lyapunov functions for approximation of the joint spectral radius. The approach is based on the analysis of the underlying switched system via inequalities imposed among multiple Lyapunov functions associated to a labeled directed graph. Inspired by concepts in automata theory and symbolic dynamics, we define a class of … Read more

Joint Spectral Radius and Path-Complete Graph Lyapunov Functions

We introduce the framework of path-complete graph Lyapunov functions for approximation of the joint spectral radius. The approach is based on the analysis of the underlying switched system via inequalities imposed among multiple Lyapunov functions associated to a labeled directed graph. Inspired by concepts in automata theory and symbolic dynamics, we define a class of … Read more

NP-hardness of Deciding Convexity of Quartic Polynomials and Related Problems

We show that unless P=NP, there exists no polynomial time (or even pseudo-polynomial time) algorithm that can decide whether a multivariate polynomial of degree four (or higher even degree) is globally convex. This solves a problem that has been open since 1992 when N. Z. Shor asked for the complexity of deciding convexity for quartic … Read more

A convex polynomial that is not sos-convex

A multivariate polynomial $p(x)=p(x_1,…,x_n)$ is sos-convex if its Hessian $H(x)$ can be factored as $H(x)= M^T(x) M(x)$ with a possibly nonsquare polynomial matrix $M(x)$. It is easy to see that sos-convexity is a sufficient condition for convexity of $p(x)$. Moreover, the problem of deciding sos-convexity of a polynomial can be cast as the feasibility of … Read more