On the power of linear programming for K-means clustering

In a previous work, we introduced a new linear programming (LP) relaxation for K-means clustering. In this paper, we further investigate the theoretical properties of this relaxation. We focus on K-means clustering with two clusters, which is an NP-hard problem. As evident from our numerical experiments with both synthetic and real-world data sets, the proposed … Read more

On the strength of recursive McCormick relaxations for binary polynomial optimization

Recursive McCormick relaxations have been among the most popular convexification techniques for binary polynomial optimization problems. It is well-understood that both the quality and the size of these relaxations depend on the recursive sequence and finding an optimal recursive sequence amounts to solving a difficult combinatorial optimization problem. In this paper, we prove that any … Read more

Explicit convex hull description of bivariate quadratic sets with indicator variables

\(\) We consider the nonconvex set \(S_n = \{(x,X,z): X = x x^T, \; x (1-z) =0,\; x \geq 0,\; z \in \{0,1\}^n\}\), which is closely related to the feasible region of several difficult nonconvex optimization problems such as the best subset selection and constrained portfolio optimization. Utilizing ideas from convex analysis and disjunctive programming, … Read more