Simple odd beta-cycle inequalities for binary polynomial optimization

We consider the multilinear polytope which arises naturally in binary polynomial optimization. Del Pia and Di Gregorio introduced the class of odd beta-cycle inequalities valid for this polytope, showed that these generally have Chv├ítal rank 2 with respect to the standard relaxation and that, together with flower inequalities, they yield a perfect formulation for cycle … Read more

Multilinear Sets with Two Monomials and Cardinality Constraints

Binary polynomial optimization is equivalent to the problem of minimizing a linear function over the intersection of the multilinear set with a polyhedron. Many families of valid inequalities for the multilinear set are available in the literature, though giving a polyhedral characterization of the convex hull is not tractable in general as binary polynomial optimization … Read more

On the complexity of binary polynomial optimization over acyclic hypergraphs

In this work we advance the understanding of the fundamental limits of computation for Binary Polynomial Optimization (BPO), which is the problem of maximizing a given polynomial function over all binary points. In our main result we provide a novel class of BPO that can be solved efficiently both from a theoretical and computational perspective. … Read more

Chvatal rank in binary polynomial optimization

Recently, several classes of cutting planes have been introduced for binary polynomial optimization. In this paper, we present the first results connecting the combinatorial structure of these inequalities with their Chvatal rank. We show that almost all known cutting planes have Chvatal rank 1. All these inequalities have an associated hypergraph that is beta-acyclic, thus, … Read more