Balancing Communication and Computation in Distributed Optimization

Methods for distributed optimization have received significant attention in recent years owing to their wide applicability in various domains including machine learning, robotics and sensor networks. A distributed optimization method typically consists of two key components: communication and computation. More specifically, at every iteration (or every several iterations) of a distributed algorithm, each node in … Read more

A Robust Multi-Batch L-BFGS Method for Machine Learning

This paper describes an implementation of the L-BFGS method designed to deal with two adversarial situations. The first occurs in distributed computing environments where some of the computational nodes devoted to the evaluation of the function and gradient are unable to return results on time. A similar challenge occurs in a multi-batch approach in which … Read more

An Investigation of Newton-Sketch and Subsampled Newton Methods

Sketching, a dimensionality reduction technique, has received much attention in the statistics community. In this paper, we study sketching in the context of Newton’s method for solving finite-sum optimization problems in which the number of variables and data points are both large. We study two forms of sketching that perform dimensionality reduction in data space: … Read more