An Adaptive Sampling Sequential Quadratic Programming Method for Equality Constrained Stochastic Optimization

This paper presents a methodology for using varying sample sizes in sequential quadratic programming (SQP) methods for solving equality constrained stochastic optimization problems. The first part of the paper deals with the delicate issue of dynamic sample selection in the evaluation of the gradient in conjunction with inexact solutions to the SQP subproblems. Under reasonable … Read more

First- and Second-Order High Probability Complexity Bounds for Trust-Region Methods with Noisy Oracles

In this paper, we present convergence guarantees for a modified trust-region method designed for minimizing objective functions whose value is computed with noise and for which gradient and Hessian estimates are inexact and possibly random. In order to account for the noise, the method utilizes a relaxed step acceptance criterion and a cautious trust-region radius … Read more

Accelerating Stochastic Sequential Quadratic Programming for Equality Constrained Optimization using Predictive Variance Reduction

In this paper, we propose a stochastic variance reduction method for solving equality constrained optimization problems. Specifically, we develop a method based on the sequential quadratic programming paradigm that utilizes gradient approximations via predictive variance reduction techniques. Under reasonable assumptions, we prove that a measure of first-order stationarity evaluated at the iterates generated by our … Read more

Full-low evaluation methods for derivative-free optimization

We propose a new class of rigorous methods for derivative-free optimization with the aim of delivering efficient and robust numerical performance for functions of all types, from smooth to non-smooth, and under different noise regimes. To this end, we have developed Full-Low Evaluation methods, organized around two main types of iterations. The first iteration type … Read more

A Stochastic Sequential Quadratic Optimization Algorithm for Nonlinear Equality Constrained Optimization with Rank-Deficient Jacobians

A sequential quadratic optimization algorithm is proposed for solving smooth nonlinear equality constrained optimization problems in which the objective function is defined by an expectation of a stochastic function. The algorithmic structure of the proposed method is based on a step decomposition strategy that is known in the literature to be widely effective in practice, … Read more

Sequential Quadratic Optimization for Nonlinear Equality Constrained Stochastic Optimization

Sequential quadratic optimization algorithms are proposed for solving smooth nonlinear optimization problems with equality constraints. The main focus is an algorithm proposed for the case when the constraint functions are deterministic, and constraint function and derivative values can be computed explicitly, but the objective function is stochastic. It is assumed in this setting that it … Read more

A Theoretical and Empirical Comparison of Gradient Approximations in Derivative-Free Optimization

In this paper, we analyze several methods for approximating gradients of noisy functions using only function values. These methods include finite differences, linear interpolation, Gaussian smoothing and smoothing on a unit sphere. The methods differ in the number of functions sampled, the choice of the sample points, and the way in which the gradient approximations … Read more

Limited-Memory BFGS with Displacement Aggregation

A displacement aggregation strategy is proposed for the curvature pairs stored in a limited-memory BFGS (a.k.a. L-BFGS) method such that the resulting (inverse) Hessian approximations are equal to those that would be derived from a full-memory BFGS method. This means that, if a sufficiently large number of pairs are stored, then an optimization algorithm employing … Read more

Quasi-Newton Methods for Deep Learning: Forget the Past, Just Sample

We present two sampled quasi-Newton methods: sampled LBFGS and sampled LSR1. Contrary to the classical variants of these methods that sequentially build (inverse) Hessian approximations as the optimization progresses, our proposed methods sample points randomly around the current iterate to produce these approximations. As a result, the approximations constructed make use of more reliable (recent … Read more

Derivative-Free Optimization of Noisy Functions via Quasi-Newton Methods

This paper presents a finite difference quasi-Newton method for the minimization of noisy functions. The method takes advantage of the scalability and power of BFGS updating, and employs an adaptive procedure for choosing the differencing interval h based on the noise estimation techniques of Hamming (2012) and Moré and Wild (2011). This noise estimation procedure … Read more