Equivariant Perturbation in Gomory and Johnson’s Infinite Group Problem

We give an algorithm for testing the extremality of minimal valid functions for Gomory and Johnson’s infinite group problem, that are piecewise linear (possibly discontinuous) with rational breakpoints. This is the first set of necessary and sufficient conditions that can be tested algorithmically, for deciding extremality in this important class of minimal valid functions. ArticleDownload … Read more

On Chubanov’s method for Linear Programming

We discuss the method recently proposed by S. Chubanov for the linear feasibility problem. We present new, concise proofs and interpretations of some of his results. We then show how our proofs can be used to find strongly polynomial time algorithms for special classes of linear feasibility problems. Under certain conditions, these results provide new … Read more

The Triangle Closure is a Polyhedron

Recently, cutting planes derived from maximal lattice-free convex sets have been studied intensively by the integer programming community. An important question in this research area has been to decide whether the closures associated with certain families of lattice-free sets are polyhedra. For a long time, the only result known was the celebrated theorem of Cook, … Read more

A (k+1)-Slope Theorem for the k-Dimensional Infinite Group Relaxation

We prove that any minimal valid function for the k-dimensional infinite group relaxation that is piecewise linear with at most k+1 slopes and does not factor through a linear map with non-trivial kernel is extreme. This generalizes a theorem of Gomory and Johnson for k=1, and Cornu\’ejols and Molinaro for k=2. ArticleDownload View PDF

Algorithimic and Complexity Results for Cutting Planes Derived from Maximal Lattice-Free Convex Sets

We study a mixed integer linear program with $m$ integer variables and $k$ non-negative continuous variables in the form of the relaxation of the corner polyhedron that was introduced by Andersen, Louveaux, Weismantel and Wolsey [\emph{Inequalities from two rows of a simplex tableau}, Proc.\ IPCO 2007, LNCS, vol.~4513, Springer, pp.~1–15]. We describe the facets of … Read more

A probabilistic analysis of the strength of the split and triangle closures

In this paper we consider a relaxation of the corner polyhedron introduced by Andersen et al., which we denote by RCP. We study the relative strength of the split and triangle cuts of RCP’s. Basu et al. showed examples where the split closure can be arbitrarily worse than the triangle closure under a `worst-cost’ type … Read more

On the Relative Strength of Split, Triangle and Quadrilateral Cuts

Integer programs defined by two equations with two free integer variables and nonnegative continuous variables have three types of nontrivial facets: split, triangle or quadrilateral inequalities. In this paper, we compare the strength of these three families of inequalities. In particular we study how well each family approximates the integer hull. We show that, in … Read more