On High-order Model Regularization for Multiobjective Optimization

A p-order regularization method for finding weak stationary points of multiobjective optimization problems with constraints is introduced. Under Holder conditions on the derivatives of the objective functions, complexity results are obtained that generalize properties recently proved for scalar optimization. ArticleDownload View PDF

A pattern search and implicit filtering algorithm for solving linearly constrained minimization problems with noisy objective functions

PSIFA -Pattern Search and Implicit Filtering Algorithm- is a derivative-free algorithm that has been designed for linearly constrained problems with noise in the objective function. It combines some elements of the pattern search approach of Lewis and Torczon (2000) with ideas from the method of implicit filtering of Kelley (2011) enhanced with a further analysis … Read more

A basis-free null space method for solving generalized saddle point problems

Using an augmented Lagrangian matrix approach, we analytically solve in this paper a broad class of linear systems that includes symmetric and nonsymmetric problems in saddle point form. To this end, some mild assumptions are made and a preconditioning is specially designed to improve the sensitivity of the systems before the calculation of their solutions. … Read more

Derivative-free methods for nonlinear programming with general lower-level constraints

Augmented Lagrangian methods for derivative-free continuous optimization with constraints are introduced in this paper. The algorithms inherit the convergence results obtained by Andreani, Birgin, Martínez and Schuverdt for the case in which analytic derivatives exist and are available. In particular, feasible limit points satisfy KKT conditions under the Constant Positive Linear Dependence (CPLD) constraint qualification. … Read more