A basis-free null space method for solving generalized saddle point problems

Using an augmented Lagrangian matrix approach, we analytically solve in this paper a broad class of linear systems that includes symmetric and nonsymmetric problems in saddle point form. To this end, some mild assumptions are made and a preconditioning is specially designed to improve the sensitivity of the systems before the calculation of their solutions. … Read more

Spectral estimates for unreduced symmetric KKT systems arising from Interior Point methods

We consider symmetrized KKT systems arising in the solution of convex quadratic programming problems in standard form by Interior Point methods. Their coefficient matrices usually have 3×3 block structure and, under suitable conditions on both the quadratic programming problem and the solution, they are nonsingular in the limit. We present new spectral estimates for these … Read more

Bounds on Eigenvalues of Matrices Arising from Interior-Point Methods

Interior-point methods feature prominently among numerical methods for inequality-constrained optimization problems, and involve the need to solve a sequence of linear systems that typically become increasingly ill-conditioned with the iterations. To solve these systems, whose original form has a nonsymmetric 3×3 block structure, it is common practice to perform block Gaussian elimination and either solve … Read more