Minimum weight t-composition of an integer

If $p \geq t$ are positive integers, a t-composition of p is an ordered t-tuple of positive integers summing p. If $T=(s_1, s_2, \dots, s_t)$ is a t-composition of p and W is a $p-(t-1) \times t$ matrix, call $W(T)= \sum_{k=1}^t w_{s_k k}$ the weight of the t-composition T. We show that finding a minimum … Read more

On the optimal parameter of a self-concordant barrier over a symmetric cone

The properties of the barrier F(x)=-log(det(x)), defined over the cone of squares of an Euclidean Jordan algebra, are analyzed using pure algebraic techniques. Furthermore, relating the Carathéodory number of a symmetric cone with the rank of an underlying Euclidean Jordan algebra, conclusions about the optimal parameter of F are suitably obtained. Namely, it is proved … Read more

On graphs with stability number equal to the optimal value of a convex quadratic program

Since the Motzkin-Straus result on the clique number of graphs, published in 1965, where they show that the size of the largest clique in a graph can be obtained by solving a quadratic programming problem, several results on the continuous approach to the determination of the clique number of a graph or, equivalently, to the … Read more