Spectral Operators of Matrices

The class of matrix optimization problems (MOPs) has been recognized in recent years to be a powerful tool by researchers far beyond the optimization community to model many important applications involving structured low rank matrices. This trend can be credited to some extent to the exciting developments in the emerging field of compressed sensing. The … Read more

On the Moreau-Yosida regularization of the vector k-norm related functions

In this paper, we conduct a thorough study on the first and second order properties of the Moreau-Yosida regularization of the vector $k$-norm function, the indicator function of its epigraph, and the indicator function of the vector $k$-norm ball. We start with settling the vector $k$-norm case via applying the existing breakpoint searching algorithms to … Read more

First order optimality conditions for mathematical programs with semidefinite cone complementarity constraints

In this paper we consider a mathematical program with semidefinite cone complementarity constraints (SDCMPCC). Such a problem is a matrix analogue of the mathematical program with (vector) complementarity constraints (MPCC) and includes MPCC as a special case. We derive explicit expressions for the strong-, Mordukhovich- and Clarke- (S-, M- and C-)stationary conditions and give constraint … Read more

An Introduction to a Class of Matrix Cone Programming

In this paper, we define a class of linear conic programming (which we call matrix cone programming or MCP) involving the epigraphs of five commonly used matrix norms and the well studied symmetric cone. MCP has recently found many important applications, for example, in nuclear norm relaxations of affine rank minimization problems. In order to … Read more