This paper describes a nonlinear least squares framework to solve a separable nonlinear ill-posed inverse problems that arises in blind deconvolution. It is shown that with proper constraints and well chosen regularization parameters, it is possible to obtain an objective function that is fairly well behaved and the nonlinear minimization problem can be effectively solved … Read more

An algorithm for the choice of the regularization parameter in inverse problems in imaging

In this paper we present an iterative algorithm for the solution of regularization problems arising in inverse image processing. The regularization function to be minimized is constituted by two terms, a data fit function and a regularization function, weighted by a regularization parameter. The proposed algorithm solves the minimization problem and estimates the regularization parameter … Read more

An Iterative algorithm for large size Least-Squares constrained regularization problems.

In this paper we propose an iterative algorithm to solve large size linear inverse ill posed problems. The regularization problem is formulated as a constrained optimization problem. The dual lagrangian problem is iteratively solved to compute an approximate solution. Before starting the iterations, the algorithm computes the necessary smoothing parameters and the error tolerances from … Read more

A quasi-Newton projection method for nonnegatively constrained image deblurring

In this paper we present a quasi-Newton projection method for image deblurring. The mathematical problem is a constrained minimization problem, where the objective function is a regularization function and the constraint is the positivity of the solution. The regularization function is a sum of the Kullback-Leibler divergence, used to minimize the error in the presence … Read more