How tight is the corner relaxation? Insights gained from the stable set problem

The corner relaxation of a mixed-integer linear program is a central concept in cutting plane theory. In a recent paper Fischetti and Monaci provide an empirical assessment of the strength of the corner and other related relaxations on benchmark problems. In this paper we give a precise characterization of the bounds given by these relaxations … Read more

A probabilistic analysis of the strength of the split and triangle closures

In this paper we consider a relaxation of the corner polyhedron introduced by Andersen et al., which we denote by RCP. We study the relative strength of the split and triangle cuts of RCP’s. Basu et al. showed examples where the split closure can be arbitrarily worse than the triangle closure under a `worst-cost’ type … Read more

Mixed Integer NonLinear Programs featuring “On/Off ” constraints: convex analysis and applications

We call ”on/off” constraint an algebraic constraint that is activated if and only if a corresponding boolean variable is turned ”on” or equal to 1. Our main subject of interest is to derive tight convex formulations of Mixed Integer NonLinear Programs (MINLPs) featuring ”on/off” constraints. We study the simple set defined by one ”on/off” constraint … Read more

Improved strategies for branching on general disjunctions

Within the context of solving Mixed-Integer Linear Programs by a Branch-and-Cut algorithm, we propose a new strategy for branching. Computational experiments show that, on the majority of our test instances, this approach enumerates fewer nodes than traditional branching. On average, on instances that contain both integer and continuous variables the number of nodes in the … Read more

On the Relative Strength of Split, Triangle and Quadrilateral Cuts

Integer programs defined by two equations with two free integer variables and nonnegative continuous variables have three types of nontrivial facets: split, triangle or quadrilateral inequalities. In this paper, we compare the strength of these three families of inequalities. In particular we study how well each family approximates the integer hull. We show that, in … Read more

A Feasibility Pump for Mixed Integer Nonlinear Programs

We present an algorithm for finding a feasible solution to a convex mixed integer nonlinear program. This algorithm, called Feasibility Pump, alternates between solving nonlinear programs and mixed integer linear programs. We also discuss how the algorithm can be iterated so as to improve the first solution it finds, as well as its integration within … Read more

An algorithmic framework for convex mixed integer nonlinear programs

This paper is motivated by the fact that mixed integer nonlinear programming is an important and difficult area for which there is a need for developing new methods and software for solving large-scale problems. Moreover, both fundamental building blocks, namely mixed integer linear programming and nonlinear programming, have seen considerable and steady progress in recent … Read more