Representing Integer Program Value Function with Neural Networks

We study the value function of an integer program (IP) by characterizing how its optimal value changes as the right-hand side varies. We show that the IP value function can be approximated to any desired degree of accuracy using machine learning (ML) techniques. Since an IP value function is a Chvátal-Gomory (CG) function, we first … Read more

When Deep Learning Meets Polyhedral Theory: A Survey

In the past decade, deep learning became the prevalent methodology for predictive modeling thanks to the remarkable accuracy of deep neural networks in tasks such as computer vision and natural language processing. Meanwhile, the structure of neural networks converged back to simpler representations based on piecewise constant and piecewise linear functions such as the Rectified … Read more

Compact mixed-integer programming relaxations in quadratic optimization

We present a technique for producing valid dual bounds for nonconvex quadratic optimization problems. The approach leverages an elegant piecewise linear approximation for univariate quadratic functions due to Yarotsky, formulating this (simple) approximation using mixed-integer programming (MIP). Notably, the number of constraints, binary variables, and auxiliary continuous variables used in this formulation grows logarithmically in … Read more

A geometric way to build strong mixed-integer programming formulations

We give an explicit geometric way to build mixed-integer programming (MIP) formulations for unions of polyhedra. The construction is simply described in terms of spanning hyperplanes in an r-dimensional linear space. The resulting MIP formulation is ideal, and uses exactly r integer variables and 2 x (# of spanning hyperplanes) general inequality constraints. We use … Read more

Strong mixed-integer programming formulations for trained neural networks

We present strong mixed-integer programming (MIP) formulations for high-dimensional piecewise linear functions that correspond to trained neural networks. These formulations can be used for a number of important tasks, such as verifying that an image classification network is robust to adversarial inputs, or solving decision problems where the objective function is a machine learning model. … Read more

A mixed-integer branching approach for very small formulations of disjunctive constraints

We study the existence and construction of very small formulations for disjunctive constraints in optimization problems: that is, formulations that use very few integer variables and extra constraints. To accomplish this, we present a novel mixed-integer branching formulation framework, which preserves many of the favorable algorithmic properties of a traditional mixed-integer programming formulation, including amenability … Read more

Nonconvex piecewise linear functions: Advanced formulations and simple modeling tools

We present novel mixed-integer programming (MIP) formulations for (nonconvex) piecewise linear functions. Leveraging recent advances in the systematic construction of MIP formulations for disjunctive sets, we derive new formulations for univariate functions using a geometric approach, and for bivariate functions using a combinatorial approach. All formulations derived are small (logarithmic in the number of piecewise … Read more

A combinatorial approach for small and strong formulations of disjunctive constraints

We present a framework for constructing small, strong mixed-integer formulations for disjunctive constraints. Our approach is a generalization of the logarithmically-sized formulations of Vielma and Nemhauser for SOS2 constraints, and we offer a complete characterization of its expressive power. We apply the framework to a variety of disjunctive constraints, producing novel, small, and strong formulations … Read more

Beating the SDP bound for the floor layout problem: A simple combinatorial idea

For many Mixed-Integer Programming (MIP) problems, high-quality dual bounds can obtained either through advanced formulation techniques coupled with a state-of-the-art MIP solver, or through Semidefinite Programming (SDP) relaxation hierarchies. In this paper, we introduce an alternative bounding approach that exploits the “combinatorial implosion” effect by solving portions of the original problem and aggregating this information … Read more

Strong mixed-integer formulations for the floor layout problem

The floor layout problem (FLP) tasks a designer with positioning a collection of rectangular boxes on a fixed floor in such a way that minimizes total communication costs between the components. While several mixed integer programming (MIP) formulations for this problem have been developed, it remains extremely challenging from a computational perspective. This work takes … Read more