Adaptive Importance Sampling Based Surrogation Methods for Bayesian Hierarchical Models, via Logarithmic Integral Optimization

We explore Maximum a Posteriori inference of Bayesian Hierarchical Models (BHMs) with intractable normalizers, which are increasingly prevalent in contemporary applications and pose computational challenges when combined with nonconvexity and nondifferentiability. To address these, we propose the Adaptive Importance Sampling-based Surrogation method, which efficiently handles nonconvexity and nondifferentiability while improving the sampling approximation of the … Read more

Coupled Learning Enabled Stochastic Programming with Endogenous Uncertainty

Predictive analytics, empowered by machine learning, is usually followed by decision-making problems in prescriptive analytics. We extend the above sequential prediction-optimization paradigm to a coupled scheme such that the prediction model can guide the decision problem to produce coordinated decisions yielding higher levels of performance. Speci fically, for stochastic programming (SP) models with latently decision-dependent uncertainty, … Read more

Two-stage Stochastic Programming with Linearly Bi-parameterized Quadratic Recourse

This paper studies the class of two-stage stochastic programs (SP) with a linearly bi-parameterized recourse function defined by a convex quadratic program. A distinguishing feature of this new class of stochastic programs is that the objective function in the second stage is linearly parameterized by the first-stage decision variable, in addition to the standard linear … Read more

Asymptotic results of Stochastic Decomposition for Two-stage Stochastic Quadratic Programming

This paper presents stochastic decomposition (SD) algorithms for two classes of stochastic programming problems: 1) two-stage stochastic quadratic-linear programming (SQLP) in which a quadratic program defines the objective function in the first stage and a linear program defines the value function in the second stage; 2) two-stage stochastic quadratic-quadratic programming (SQQP) which has quadratic programming … Read more

Coalescing Data and Decision Sciences for Analytics

The dream of analytics is to work from common, clean, and consistent data sources in a manner that all of its facets (descriptive, predictive, and prescriptive) are sup- ported via a coherent vision of data and decision sciences. To the extent that data and decisions sciences work within logically/mathematically consistent frameworks, and that these paradigms … Read more