Effective Separation of Disjunctive Cuts for Convex Mixed Integer Nonlinear Programs

We describe a computationally effective method for generating disjunctive inequalities for convex mixed-integer nonlinear programs (MINLPs). The method relies on solving a sequence of cut-generating linear programs, and in the limit will generate an inequality as strong as can be produced by the cut-generating nonlinear program suggested by Stubbs and Mehrotra. Using this procedure, we … Read more

Some Results on the Strength of Relaxations of Multilinear Functions

We study approaches for obtaining convex relaxations of global optimization problems containing multilinear functions. Specifically, we compare the concave and convex envelopes of these functions with the relaxations that are obtained with a standard relaxation approach, due to McCormick. The standard approach reformulates the problem to contain only bilinear terms and then relaxes each term … Read more

Algorithms and Software for Convex Mixed Integer Nonlinear Programs

This paper provides a survey of recent progress and software for solving mixed integer nonlinear programs (MINLP) wherein the objective and constraints are defined by convex functions and integrality restrictions are imposed on a subset of the decision variables. Convex MINLPs have received sustained attention in very years. By exploiting analogies to the case of … Read more

Solving Large Steiner Triple Covering Problems

Computing the 1-width of the incidence matrix of a Steiner Triple System gives rise to small set covering instances that provide a computational challenge for integer programming techniques. One major source of difficulty for instances of this family is their highly symmetric structure, which impairs the performance of most branch-and-bound algorithms. The largest instance in … Read more

Perspective Reformulation and Applications

In this paper we survey recent work on the perspective reformulation approach that generates tight, tractable relaxations for convex mixed integer nonlinear programs (MINLP)s. This preprocessing technique is applicable to cases where the MINLP contains binary indicator variables that force continuous decision variables to take the value 0, or to belong to a convex set. … Read more

Optimal Security Response to Attacks on Open Science Grids

Cybersecurity is a growing concern, especially in open grids, where attack propagation is easy because of prevalent collaborations among thousands of users and hundreds of institutions. The collaboration rules that typically govern large science experiments as well as social networks of scientists span across the institutional security boundaries. A common concern is that the increased … Read more

Perspective Reformulations of Mixed Integer Nonlinear Programs with Indicator Variables

We study mixed integer nonlinear programs (MINLP)s that are driven by a collection of indicator variables where each indicator variable controls a subset of the decision variables. An indicator variable, when it is “turned off”, forces some of the decision variables to assume fixed values, and, when it is “turned on”, forces them to belong … Read more

Constraint Orbital Branching

Orbital branching is a method for branching on variables in integer programming that reduces the likelihood of evaluating redundant, isomorphic nodes in the branch-and-bound procedure. In this work, the orbital branching methodology is extended so that the branching disjunction can be based on an arbitrary constraint. Many important families of integer programs are structured such … Read more

Orbital Branching

We introduce orbital branching, an effective branching method for integer programs containing a great deal of symmetry. The method is based on computing groups of variables that are equivalent with respect to the symmetry remaining in the problem after branching, including symmetry which is not present at the root node. These groups of equivalent variables, … Read more

Lookahead Branching for Mixed Integer Programming

We consider the effectiveness of a lookahead branching method for the selection of branching variable in branch-and-bound method for mixed integer programming. Specifically, we ask the following question: by taking into account the impact of the current branching decision on the bounds of the child nodes two levels deeper than the current node, can better … Read more