Spanning and Splitting: Integer Semidefinite Programming for the Quadratic Minimum Spanning Tree Problem

In the quadratic minimum spanning tree problem (QMSTP) one wants to find the minimizer of a quadratic function over all possible spanning trees of a graph. We give two formulations of the QMSTP as mixed-integer semidefinite programs exploiting the algebraic connectivity of a graph. Based on these formulations, we derive a doubly nonnegative relaxation for … Read more

Connectivity via convexity: Bounds on the edge expansion in graphs

Convexification techniques have gained increasing interest over the past decades. In this work, we apply a recently developed convexification technique for fractional programs by He, Liu and Tawarmalani (2024) to the problem of determining the edge expansion of a graph. Computing the edge expansion of a graph is a well-known, difficult combinatorial problem that seeks … Read more

Edge expansion of a graph: SDP-based computational strategies

Computing the edge expansion of a graph is a famously hard combinatorial problem for which there have been many approximation studies. We present two variants of exact algorithms using semidefinite programming (SDP) to compute this constant for any graph. The first variant uses the SDP relax- ation first to reduce the search space considerably. One … Read more