The Analytics of Robust Satisficing

We propose a new prescriptive analytics model based on robust satisficing that incorporates a prediction model to determine the here-and-now decision that would achieve a target expected reward as well as possible under both risk ambiguity and estimation uncertainty. The reward function of the decision model depends on some observable parameters whose future realizations are … Read more

Robust Explainable Prescriptive Analytics

We propose a new robust explainable prescriptive analytics framework that minimizes a risk-based objective function under distributional ambiguity by leveraging the data collected on the past realizations of the uncertain parameters affecting the decision model and the side information that have some predictive power on those uncertainties. The framework solves for an explainable response policy … Read more

Tractable Robust Supervised Learning Models

At the heart of supervised learning is a minimization problem with an objective function that evaluates a set of training data over a loss function that penalizes poor fitting and a regularization function that penalizes over-fitting to the training data. More recently, data-driven robust optimization based learning models provide an intuitive robustness perspective of regularization. … Read more

Robust Epidemiological Prediction and Optimization

The COVID-19 pandemic has brought many countries to their knees, and the urgency to return to normalcy has never been greater. Epidemiological models, such as the SEIR compartmental model, are indispensable tools for, among other things, predicting how pandemic may spread over time and how vaccinations and different public health interventions could affect the outcome. … Read more

Vehicle Repositioning under Uncertainty

We consider a general multi-period repositioning problem in vehicle-sharing networks such as bicycle-sharing systems, free-float car-sharing systems, and autonomous mobility-on-demand systems. This problem is subject to uncertainties along multiple dimensions – including demand, travel time, and repositioning duration – and faces several operational constraints such as the service level and cost budget. We propose a … Read more