Some lower bounds on sparse outer approximations of polytopes

Motivated by the need to better understand the properties of sparse cutting-planes used in mixed integer programming solvers, the paper [1] studied the idealized problem of how well a polytope is approximated by the use of sparse valid inequalities. As an extension to this work, we study the following “less idealized” questions in this pa- … Read more

Mixed-integer Quadratic Programming is in NP

Mixed-integer quadratic programming (MIQP) is the problem of optimizing a quadratic function over points in a polyhedral set where some of the components are restricted to be integral. In this paper, we prove that the decision version of mixed-integer quadratic programming is in NP, thereby showing that it is NP-complete. This is established by showing … Read more

How Good Are Sparse Cutting-Planes?

Sparse cutting-planes are often the ones used in mixed-integer programing (MIP) solvers, since they help in solving the linear programs encountered during branch-\&-bound more efficiently. However, how well can we approximate the integer hull by just using sparse cutting-planes? In order to understand this question better, given a polyope $P$ (e.g. the integer hull of … Read more

On the Relative Strength of Different Generalizations of Split Cuts

Split cuts are among the most important and well-understood cuts for general mixed-integer programs. In this paper we consider some recent generalizations of split cuts and compare their relative strength. More precisely, we compare the elementary closures of {split}, {cross}, {crooked cross} and general {multi-branch split cuts} as well as cuts obtained from multi-row and … Read more

A (k+1)-Slope Theorem for the k-Dimensional Infinite Group Relaxation

We prove that any minimal valid function for the k-dimensional infinite group relaxation that is piecewise linear with at most k+1 slopes and does not factor through a linear map with non-trivial kernel is extreme. This generalizes a theorem of Gomory and Johnson for k=1, and Cornu\’ejols and Molinaro for k=2. ArticleDownload View PDF

A probabilistic analysis of the strength of the split and triangle closures

In this paper we consider a relaxation of the corner polyhedron introduced by Andersen et al., which we denote by RCP. We study the relative strength of the split and triangle cuts of RCP’s. Basu et al. showed examples where the split closure can be arbitrarily worse than the triangle closure under a `worst-cost’ type … Read more