Approximating inequality systems within probability functions: studying implications for problems and consistency of first-order information

In this work, we are concerned with the study of optimization problems featuring so-called probability or chance constraints. Probability constraints measure the level of satisfaction of an underlying random inequality system and ensure that this level is high enough. Such an underlying inequality system could be expressed by an abstractly known or perhaps costly to … Read more

A Variational Analysis Approach for Bilevel Hyperparameter Optimization with Sparse Regularization

We study a bilevel optimization framework for hyperparameter learning in variational models, with a focus on sparse regression and classification tasks. In particular, we consider a weighted elastic-net regularizer, where feature-wise regularization parameters are learned through a bilevel formulation. A key novelty of our approach is the use of a Forward-Backward (FB) reformulation of the … Read more

Moreau envelope of supremum functions with applications to infinite and stochastic programming

In this paper, we investigate the Moreau envelope of the supremum of a family of convex, proper, and lower semicontinuous functions. Under mild assumptions, we prove that the Moreau envelope of a supremum is the supremum of Moreau envelopes, which allows us to approximate possibly nonsmooth supremum functions by smooth functions that are also the … Read more