Escaping strict saddle points of the Moreau envelope in nonsmooth optimization

Recent work has shown that stochastically perturbed gradient methods can efficiently escape strict saddle points of smooth functions. We extend this body of work to nonsmooth optimization, by analyzing an inexact analogue of a stochastically perturbed gradient method applied to the Moreau envelope. The main conclusion is that a variety of algorithms for nonsmooth optimization … Read more

Algorithms for Difference-of-Convex (DC) Programs Based on Difference-of-Moreau-Envelopes Smoothing

In this paper we consider minimization of a difference-of-convex (DC) function with and without linear constraints. We first study a smooth approximation of a generic DC function, termed difference-of-Moreau-envelopes (DME) smoothing, where both components of the DC function are replaced by their respective Moreau envelopes. The resulting smooth approximation is shown to be Lipschitz differentiable, … Read more

The Landscape of the Proximal Point Method for Nonconvex-Nonconcave Minimax Optimization

Minimax optimization has become a central tool for modern machine learning with applications in generative adversarial networks, robust optimization, reinforcement learning, etc. These applications are often nonconvex-nonconcave, but the existing theory is unable to identify and deal with the fundamental difficulties posed by nonconvex-nonconcave structures. In this paper, we study the classic proximal point method … Read more

Moreau envelope of supremum functions with applications to infinite and stochastic programming

In this paper, we investigate the Moreau envelope of the supremum of a family of convex, proper, and lower semicontinuous functions. Under mild assumptions, we prove that the Moreau envelope of a supremum is the supremum of Moreau envelopes, which allows us to approximate possibly nonsmooth supremum functions by smooth functions that are also the … Read more

On proximal point-type algorithms for weakly convex functions and their connection to the backward Euler method

In this article we study the connection between proximal point methods for nonconvex optimization and the backward Euler method from numerical Ordinary Differential Equations (ODEs). We establish conditions for which these methods are equivalent. In the case of weakly convex functions, for small enough parameters, the implicit steps can be solved using a strongly convex … Read more

Stochastic model-based minimization of weakly convex functions

We consider an algorithm that successively samples and minimizes stochastic models of the objective function. We show that under weak-convexity and Lipschitz conditions, the algorithm drives the expected norm of the gradient of the Moreau envelope to zero at the rate $O(k^{-1/4})$. Our result yields the first complexity guarantees for the stochastic proximal point algorithm … Read more

Stochastic subgradient method converges at the rate (k^{-1/4})$ on weakly convex function

We prove that the projected stochastic subgradient method, applied to a weakly convex problem, drives the gradient of the Moreau envelope to zero at the rate $O(k^{-1/4})$. Article Download View Stochastic subgradient method converges at the rate (k^{-1/4})$ on weakly convex function

Epi-convergent Smoothing with Applications to Convex Composite Functions

Smoothing methods have become part of the standard tool set for the study and solution of nondifferentiable and constrained optimization problems as well as a range of other variational and equilibrium problems. In this note we synthesize and extend recent results due to Beck and Teboulle on infimal convolution smoothing for convex functions with those … Read more

A variable smoothing algorithm for solving convex optimization problems

In this article we propose a method for solving unconstrained optimization problems with convex and Lipschitz continuous objective functions. By making use of the Moreau envelopes of the functions occurring in the objective, we smooth the latter to a convex and differentiable function with Lipschitz continuous gradient by using both variable and constant smoothing parameters. … Read more

Joint minimization with alternating Bregman proximity operators

A systematic study of the proximity properties of Bregman distances is carried out. This investigation leads to the introduction of a new type of proximity operator which complements the usual Bregman proximity operator. We establish key properties of these operators and utilize them to devise a new alternating procedure for solving a broad class of … Read more