A novel adaptive stepsize for proximal gradient method solving mixed variational inequality problems and applications

In this paper, we propose a new algorithm for solving monotone mixed variational inequality problems in real Hilbert spaces based on proximal gradient method. Our new algorithm use a novel adaptive stepsize which is proved to be increasing to a positive limitation. The weak convergence and strong convergence with R-linear rate of our new algorithm … Read more

DC programming approach for solving a class of bilevel partial facility interdiction problems

We propose a new approach based DC programming for fnding a solution of the partial facility interdiction problem that belongs to the class of bilevel programming. This model was frst considered in the work of Aksen et al. [1] with a heuristic algorithm named multi-start simplex search (MSS). However, because of the big number of … Read more

A Novel Stepsize for Gradient Descent Method

In this paper, we propose a novel stepsize for the classical gradient descent scheme to solve unconstrained nonlinear optimization problems. We are concerned with the convex and smooth objective without the globally Lipschitz gradient condition. Our new method just needs the locally Lipschitz gradient but still gets the rate $O(\frac{1}{k})$ of $f(x^k)-f_*$ at most. By … Read more