It’s All in the Mix: Wasserstein Classification and Regression with Mixed Features

Problem definition: A key challenge in supervised learning is data scarcity, which can cause prediction models to overfit to the training data and perform poorly out of sample. A contemporary approach to combat overfitting is offered by distributionally robust problem formulations that consider all data-generating distributions close to the empirical distribution derived from historical samples, … Read more

Wasserstein Logistic Regression with Mixed Features

Recent work has leveraged the popular distributionally robust optimization paradigm to combat overfitting in classical logistic regression. While the resulting classification scheme displays a promising performance in numerical experiments, it is inherently limited to numerical features. In this paper, we show that distributionally robust logistic regression with mixed (i.e., numerical and categorical) features, despite amounting … Read more