On the strength of Gomory mixed-integer cuts as group cuts

Gomory mixed-integer (GMI) cuts generated from optimal simplex tableaus are known to be useful in solving mixed-integer programs. Further, it is well-known that GMI cuts can be derived from facets of Gomory’s master cyclic group polyhedron and its mixed-integer extension studied by Gomory and Johnson. In this paper we examine why cutting planes derived from … Read more

Valid inequalities based on the interpolation procedure

We study the interpolation procedure of Gomory and Johnson (1972), which generates cutting planes for general integer programs from facets of master cyclic group polyhedra. This idea has recently been re-considered by Evans (2002) and Gomory, Johnson and Evans (2003). We compare inequalities generated by this procedure with mixed-integer rounding (MIR) based inequalities discussed in … Read more

Valid inequalities based on simple mixed-integer sets

In this paper we use facets of mixed-integer sets with two and three variables to derive valid inequalities for integer sets defined by a single equation. These inequalities also define facets of the master cyclic group polyhedron of Gomory. Facets of this polyhedron give strong valid inequalities for general mixed-integer sets, such as the well-known … Read more