Monoidal Cut Strengthening and Generalized Mixed-Integer Rounding for Disjunctions and Complementarity Constraints

In the early 1980s, Balas and Jeroslow presented monoidal disjunctive cuts exploiting the integrality of variables. This article investigates the relation of monoidal cut strengthening to other classes of cutting planes for general two-term disjunctions. We introduce a generalization of mixed-integer rounding cuts and show equivalence to monoidal disjunctive cuts. Moreover, we demonstrate the effectiveness … Read more

Mixed-Integer Rounding Enhanced Benders Decomposition for Multiclass Service System Staffing and Scheduling with Arrival Rate Uncertainty

We study server scheduling in multiclass service systems under stochastic uncertainty in the customer arrival volumes. Common practice in such systems is to first identify staffing levels, and then determine schedules for the servers that cover these targets. We propose a new stochastic integer programming model that integrates these two decisions, which can yield lower … Read more

Mingling: Mixed-Integer Rounding with Bounds

Mixed-integer rounding (MIR) is a simple, yet powerful procedure for generating valid inequalities for mixed-integer programs. When used as cutting planes, MIR inequalities are very effective for problems with unbounded integer variables. For problems with bounded integer variables, however, cutting planes based on lifting techniques appear to be more effective. This is not surprising as … Read more

MIR Closures of Polyhedral Sets

We study the mixed-integer rounding (MIR) closures of polyhedral sets. The MIR closure of a polyhedral set is equal to its split closure and the associated separation problem is NP-hard. We describe a mixed-integer programming (MIP) model with linear constraints and a non-linear objective for separating an arbitrary point from the MIR closure of a … Read more

Capacitated network design using general flow-cutset inequalities

This paper deals with directed, bidirected, and undirected capacitated network design problems. Using mixed integer rounding (MIR), we generalize flow-cutset inequalities to these three link types and to an arbitrary modular link capacity structure, and propose a generic separation algorithm. In an extensive computational study on 54 instances from the Survivable Network Design Library (SNDlib), … Read more

On the complexity of cutting plane proofs using split cuts

We prove that cutting-plane proofs which use split cuts have exponential length in the worst case. Split cuts, defined by Cook, Kannan, Schrijver (1993), are known to be equivalent to a number of other classes of cuts, namely mixed-integer rounding (MIR) cuts, Gomory mixed-integer cuts, and disjunctive cuts. Our result thus implies the exponential worst-case … Read more

Two step MIR inequalities for mixed-integer programs

Two-step mixed-integer rounding inequalities are valid inequalities derived from a facet of a simple mixed-integer set with three variables and one constraint. In this paper we investigate how to effectively use these inequalities as cutting planes for general mixed-integer problems. We study the separation problem for single constraint sets and show that it can be … Read more

On the strength of Gomory mixed-integer cuts as group cuts

Gomory mixed-integer (GMI) cuts generated from optimal simplex tableaus are known to be useful in solving mixed-integer programs. Further, it is well-known that GMI cuts can be derived from facets of Gomory’s master cyclic group polyhedron and its mixed-integer extension studied by Gomory and Johnson. In this paper we examine why cutting planes derived from … Read more

Safe bounds in linear and mixed-integer programming

Current mixed-integer linear programming solvers are based on linear programming routines that use floating point arithmetic. Occasionally, this leads to wrong solutions, even for problems where all coefficients and all solution components are small integers. It is shown how, using directed rounding and interval arithmetic, cheap pre- and postprocessing of the linear programs arising in … Read more