Convergence Analysis of an Interior-Point Method for Nonconvex Nonlinear Programming
In this paper, we present global and local convergence results for an interior-point method for nonlinear programming. The algorithm uses an $\ell_1$ penalty approach to relax all constraints, to provide regularization, and to bound the Lagrange multipliers. The penalty problems are solved using a simplified version of Chen and Goldfarb’s strictly feasible interior-point method [6]. … Read more