Stackelberg Games with k-Submodular Function under Distributional Risk-Receptiveness and Robustness

We study submodular optimization in adversarial context, applicable to machine learning problems such as feature selection using data susceptible to uncertainties and attacks. We focus on Stackelberg games between an attacker (or interdictor) and a defender where the attacker aims to minimize the defender’s objective of maximizing a k-submodular function. We allow uncertainties arising from … Read more

Algorithms for Cameras View-Frame Placement Problems in the Presence of an Adversary and Distributional Ambiguity

In this paper, we introduce cameras view-frame placement problem (denoted by CFP) in the presence an adversary whose objective is to minimize the maximum coverage by p cameras in response to input provided by n autonomous agents in a remote location. We allow uncertainty in the success of attacks, incomplete information of the probability distribution … Read more