Stackelberg Games with k-Submodular Function under Distributional Risk-Receptiveness and Robustness

\(\) We study submodular optimization in adversarial context, applicable to machine learning problems such as feature selection using data susceptible to uncertainties and attacks. We focus on Stackelberg games between an attacker (or interdictor) and a defender where the attacker aims to minimize the defender’s objective of maximizing a k-submodular function. We allow uncertainties arising … Read more

Distributionally Risk-Receptive and Robust Multistage Stochastic Integer Programs and Interdiction Models

In this paper, we study distributionally risk-receptive and distributionally robust (or risk-averse) multistage stochastic mixed-integer programs (denoted by DRR- and DRO-MSIPs). We present cutting plane-based and reformulation-based approaches for solving DRR- and DRO-MSIPs without and with decision-dependent uncertainty to optimality. We show that these approaches are finitely convergent with probability one. Furthermore, we introduce generalizations … Read more

Algorithms for Cameras View-Frame Placement Problems in the Presence of an Adversary and Distributional Ambiguity

In this paper, we introduce cameras view-frame placement problem (denoted by CFP) in the presence an adversary whose objective is to minimize the maximum coverage by p cameras in response to input provided by n autonomous agents in a remote location. We allow uncertainty in the success of attacks, incomplete information of the probability distribution … Read more

Semi-Infinite Mixed Binary and Disjunctive Programs: Applications to Set-Covering with Infinite Demand Points and Implicit Hitting Set Problems

Sherali and Adams [Discrete Applied Math. 157: 1319-1333, 2009] derived convex hull of semi-infinite mixed binary linear programs (SIMBLPs) using Reformulation-Linearization Technique (RLT). In this paper, we study semi-infinite disjunctive programs (SIDPs — a generalization of SIMBLPs) and present linear programming equivalent and valid inequalities for them. We utilize these results for deriving a hierarchy … Read more

Semi-Infinite Generalized Disjunctive and Mixed Integer Convex Programs with(out) Uncertainty

In this paper, we introduce semi-infinite generalized disjunctive programs that are defined by logical propositions along with disjunctions of sets of logical equations and infinite number of algebraic inequalities. We denote these programs by SIGDPs. For SIGDPs with linear and convex inequalities, we present new reformulations: semi-infinite mixed-binary/disjunctive linear programs and semi-infinite mixed-binary/disjunctive convex programs, … Read more

Transportation and Inventory Planning in Serial Supply Chain with Heterogeneous Capacitated Vehicles

We study serial supply chain problems where a product is transported from a supplier to a warehouse (inbound transportation), and then from the warehouse (outbound transportation) to a retailer such that demand for a given planning horizon is satisfied. We consider heterogeneous vehicles of varying capacities for the transportation in each time period, and the … Read more

Distributionally risk-receptive and risk-averse network interdiction problems with general ambiguity set

We introduce generalizations of stochastic network interdiction problem with distributional ambiguity. Specifically, we consider a distributionally risk-averse (or robust) network interdiction problem (DRA-NIP) and a distributionally risk-receptive network interdiction problem (DRR-NIP) where a leader maximizes a follower’s minimal expected objective value for either the worst-case or the best-case, respectively, probability distribution belonging to ambiguity set … Read more

Planar Maximum Coverage Location Problem with Partial Coverage, Continuous Spatial Demand, and Adjustable Quality of Service

We consider a generalization of the classical planar maximum coverage location problem (PMCLP) in which partial coverage is allowed, facilities have adjustable quality of service (QoS) or service range, and demand zones and service zone of each facility are represented by two-dimensional spatial objects such as rectangles, circles, polygons, etc. We denote this generalization by … Read more

Planar Maximum Coverage Location Problem with Partial Coverage, Continuous Spatial Demand, and Adjustable Quality of Service

We consider a generalization of the classical planar maximum coverage location problem (PMCLP) in which partial coverage is allowed, facilities have adjustable quality of service (QoS) or service range, and demand zones and service zone of each facility are represented by two-dimensional spatial objects such as rectangles, circles, polygons, etc. We denote this generalization by … Read more

Discrete Multi-Module Capacitated Lot-Sizing Problems with Multiple Items

We study single-item discrete multi-module capacitated lot-sizing problems where the amount produced in each time period is equal to the summation of binary multiples of the capacities of n available different modules (or machines). For fixed n≥2, we develop fixed-parameter tractable (polynomial) exact algorithms that generalize the algorithms of van Vyve (2007) for n=1. We … Read more