Budget-Constrained Maximization of “Cobb-Douglas with Linear Components” Utility Function

In what follows, we provide the demand analysis associated with budget-constrained linear utility maximization for each of several categories of goods, with the marginal rate of consumption expenditure-as a share of wealth- being a positive constant less than or equal to one. The marginal rate of consumption expenditure is endogenously determined, by a budget-constrained “Cobb-Douglas … Read more

Production Theory for Constrained Linear Activity Models

The purpose of this paper is to generalize the framework of activity analysis discussed in Villar (2003) and obtain similar results concerning solvability. We generalize the model due to Villar (2003), without requiring any dimensional requirements on the activity matrices and by introducing a model of activity analysis in which each activity may (or may … Read more

Strong Duality: Without Simplex and without theorems of alternatives

The simplex method has its own problems related to degenerate basic feasible solutions. While such solutions are infrequent, from a theoretical standpoint a proof of the strong duality theorem that uses the simplex method is not complete until it has taken a few extra steps. Further, for economists the duality theorem is extremely important whereas … Read more

Existence of Competitive Equilibrium in Piecewise Linear and Concave Exchange Economies and the non-symmetric Nash Bargaining Solution

In this paper we show that for concave piecewise linear exchange economies every competitive equilibrium satisfies the property that the competitive allocation is a non-symmetric Nash bargaining solution with weights being the initial income of individual agents evaluated at the equilibrium price vector. We prove the existence of competitive equilibrium for concave piecewise linear exchange … Read more

Local versus Global Profit Maximization: The Case of Discrete Concave Production Functions

In this paper we show that for discrete concave functions, a local maximum need not be a global maximum. We also provide examples of discrete concave functions where this coincidence holds. As a direct consequence of this, we can establish the equivalence of local and global profit maximizers for an equivalent well-behaved production function that … Read more

Existence of Equilibrium for Integer Allocation Problems

In this paper we show that if all agents are equipped with discrete concave production functions, then a feasible price allocation pair is a market equilibrium if and only if it solves a linear programming problem, similar to, but perhaps simpler than the one invoked in Yang (2001). Using this result, but assuming discrete concave … Read more

Envelope Theorems For Finite Choice Sets

This paper is concerned with the study of envelope theorems for finite choice sets. More specifically, we consider the problem of differentiability of the value function arising out of the maximization of a parametrized objective function, when the set of alternatives is non-empty and finite. The parameter is confined to the closed interval [0,1] and … Read more