The improvement function in branch-and-bound methods for complete global optimization

We present a new spatial branch-and-bound approach for treating optimization problems with nonconvex inequality constraints. It is able to approximate the set of all global minimal points in case of solvability, and else to detect infeasibility. The new technique covers the nonconvex constraints by means of an improvement function which, although nonsmooth, can be treated … Read more

The improvement function reformulation for graphs of minimal point mappings

Graphs of minimal point mappings of parametric optimization problems appear in the definition of feasible sets of bilevel optimization problems and of semi-infinite optimization problems, and the intersection of multiple such graphs defines (generalized) Nash equilibria. This paper shows how minimal point graphs of nonconvex parametric optimization problems can be written with the help of … Read more

A branch-and-bound algorithm for non-convex Nash equilibrium problems

This paper introduces a spatial branch-and-bound method for the approximate computation of the set of all epsilon-Nash equilibria of continuous box-constrained non-convex Nash equilibrium problems. We explain appropriate discarding and fathoming techniques, provide a termination proof for a prescribed approximation tolerance, and report our computational experience. ArticleDownload View PDF

A branch-and-prune algorithm for discrete Nash equilibrium problems

We present a branch-and-prune procedure for discrete Nash equilibrium problems with a convex description of each player’s strategy set. The derived pruning criterion does not require player convexity, but only strict convexity of some player’s objective function in a single variable. If satisfied, it prunes choices for this variable by stating activity of certain constraints. … Read more

Feasible rounding approaches and diving strategies in branch-and-bound methods for mixed-integer optimization

In this paper, we study the behavior of feasible rounding approaches for mixed-integer linear and nonlinear optimization problems (MILP and MINLP, respectively) when integrated into tree search of branch-and-bound. Our research addresses two important aspects. First, we develop insights into how an (enlarged) inner parallel set, which is the main component for feasible rounding approaches, … Read more