On Quasi-Newton Forward–Backward Splitting: Proximal Calculus and Convergence

We introduce a framework for quasi-Newton forward–backward splitting algorithms (proximal quasi-Newton methods) with a metric induced by diagonal +/- rank-r symmetric positive definite matrices. This special type of metric allows for a highly efficient evaluation of the proximal mapping. The key to this efficiency is a general proximal calculus in the new metric. By using … Read more

A quasi-Newton proximal splitting method

A new result in convex analysis on the calculation of proximity operators in certain scaled norms is derived. We describe efficient implementations of the proximity calculation for a useful class of functions; the implementations exploit the piece-wise linear nature of the dual problem. The second part of the paper applies the previous result to acceleration … Read more

Templates for Convex Cone Problems with Applications to Sparse Signal Recovery

This paper develops a general framework for solving a variety of convex cone problems that frequently arise in signal processing, machine learning, statistics, and other fi elds. The approach works as follows: first, determine a conic formulation of the problem; second, determine its dual; third, apply smoothing; and fourth, solve using an optimal first-order method. A … Read more

NESTA: A Fast and Accurate First-order Method for Sparse Recovery

Accurate signal recovery or image reconstruction from indirect and possibly under- sampled data is a topic of considerable interest; for example, the literature in the recent field of compressed sensing is already quite immense. Inspired by recent breakthroughs in the development of novel fi rst-order methods in convex optimization, most notably Nesterov’s smoothing technique, this paper … Read more