Decentralized Decision-making and Protocol Design for Recycled Material Flows

Reverse logistics networks often consist of several tiers with independent members competing at each tier. This paper develops a methodology to examine the individual entity behavior in reverse production systems where every entity acts to maximize its own benefits. We consider two tiers in the network, collectors and processors. The collectors determine individual flow functions … Read more

A Data-Driven Approach to Newsvendor Problems

We propose an approach to the classical newsvendor problem and its extensions subject to uncertain demand that: (a) works directly with data, i.e., combines historical data and optimization in a single framework, (b) yields robust solutions and incorporates risk preferences using one scalar parameter, rather than utility functions, (c) allows for tractable formulations, specifically, linear … Read more

Hybrid heuristics for the permutation flow shop problem

The Flow Shop Problem (FSP) is known to be NP-hard when more than three machines are considered. Thus, for non-trivial size problem instances, heuristics are needed to find good orderings. We consider the permutation case of this problem. For this case, denoted by F|prmu|Cmax, the sequence of jobs has to remain the same at each … Read more

A Heuristic Approach for Big Bucket Production Planning Problems

Multi-level production planning problems in which multiple items compete for the same resources frequently occur in practice, yet remain daunting in their difficulty to solve. In this paper we propose a heuristic framework that can generate high quality feasible solutions quickly for various kinds of lot-sizing problems. In addition, unlike many other heuristics, it generates … Read more

Lot sizing with inventory gains

This paper introduces the single item lot sizing problem with inventory gains. This problem is a generalization of the classical single item capacitated lot sizing problem to one in which stock is not conserved. That is, the stock in inventory undergoes a transformation in each period that is independent of the period in which the … Read more

New solution approaches to the general single machine earliness-tardiness problem

This paper addresses the general single-machine earliness-tardiness problem with distinct release dates, due dates, and unit costs. The aim of this research is to obtain an exact nonpreemptive solution in which machine idle time is allowed. In a hybrid approach, we formulate and then solve the problem using dynamic programming (DP) while incorporating techniques from … Read more

Coherent Risk Measures in Inventory Problems

We analyze an extension of the classical multi-period, single-item, linear cost inventory problem where the objective function is a coherent risk measure. Properties of coherent risk measures allow us to offer a unifying treatment of risk averse and min-max type formulations. For the single period newsvendor problem, we show that the structure of the optimal … Read more

The multi-item capacitated lot-sizing problem with setup times and shortage costs

We address a multi-item capacitated lot-sizing problem with setup times and shortage costs that arises in real-world production planning problems. Demand cannot be backlogged, but can be totally or partially lost. The problem is NP-hard. A mixed integer mathematical formulation is presented. Our approach in this paper is to propose some classes of valid inequalities … Read more

A Random Key Based Genetic Algorithm for the Resource Constrained Project Scheduling Problem

This paper presents a genetic algorithm for the Resource Constrained Project Scheduling Problem (RCPSP). The chromosome representation of the problem is based on random keys. The schedule is constructed using a heuristic priority rule in which the priorities of the activities are defined by the genetic algorithm. The heuristic generates parameterized active schedules. The approach … Read more

The value of multi-stage stochastic programming in capacity planning under uncertainty

This paper addresses a general class of capacity planning problems under uncertainty, which arises, for example, in semiconductor tool purchase planning. Using a scenario tree to model the evolution of the uncertainties, we develop a multi-stage stochastic integer programming formulation for the problem. In contrast to earlier two-stage approaches, the multi-stage model allows for revision … Read more