Stronger Multi-Commodity Flow Formulations of the Capacitated Vehicle Routing Problem

The Capacitated Vehicle Routing Problem is a much-studied (and strongly NP-hard) combinatorial optimization problem, for which many integer programming formulations have been proposed. We present some new multi-commodity flow (MCF) formulations, and show that they dominate all of the existing ones, in the sense that their continuous relaxations yield stronger lower bounds. Moreover, we show … Read more

A mixed integer programming approach for asset protection during escaped wildfires

Incident Management Teams (IMTs) are responsible for managing the response to wildfires. One of the IMT’s objectives is the protection of assets and infrastructure. In this paper we develop a mathematical model to assist IMTs in assigning resources to asset protection activities during escaped wildfires. We present a mixed integer programming model for resource allocation … Read more

Parallel Large-Neighborhood Search Techniques for LNG Inventory Routing

Liquefied natural gas (LNG) is estimated to account for a growing portion of the world natural gas trade. For profitable operation of a capital intensive LNG project, it is necessary to optimally design various aspects of the supply chain associated with it. Of particular interest is optimization of ship schedules and the inventories on the … Read more

The cooperative orienteering problem with time windows

In this we paper we define a new class of the team orienteering problem; the cooperative orienteering problem with time windows (COPTW). The COPTW is a generalisation of the TOPTW, which requires multiple vehicles to cooperatively collect the reward from a location. The COPTW is demonstrated with the aid of a wildfire scenario in South … Read more

On Auction Models of Conflict with Network Applications

We consider several models of complex systems with active elements and show that the auction mechanism appears very natural in attaining proper equilibrium states, even in comparison with game theory ones. In particular, network equilibria are treated as implementation of the auction principle. An additional example of resource allocation in wireless communication networks is also … Read more

Bound Improvement for LNG Inventory Routing

Liquefied Natural Gas (LNG) is steadily becoming a common mode for commercializing natural gas. In this paper, we develop methods for improving both lower and upper bounds for a previously stated form of an LNG inventory routing problem. A Dantzig-Wolfe-based decomposition approach is developed for LNG inventory routing problem (LNG-IRP) attempting to overcome poor lower … Read more

Planning for Mining Operations with Time and Resource Constraints

We study a daily mine planning problem where, given a set of blocks we wish to mine, our task is to generate a mining sequence for the excavators such that blending resource constraints are met at various stages of the sequence. Such time-oriented resource constraints are not traditionally handled well by automated planners. On the … Read more

Minimum Cost Path Problem for Plug-in Hybrid Electric Vehicles

We introduce a practically important and theoretically challenging problem: finding the minimum cost path for PHEVs in a road network with refueling and charging stations. We show that this problem is NP-complete and present a mixed integer quadratically constrained formulation, a discrete approximation dynamic programming heuristic, and a shortest path heuristic as solution methodologies. Practical … Read more

Constraint Programming for LNG Ship Scheduling and Inventory Management

We propose a constraint programming approach for the optimization of inventory routing in the liquefied natural gas industry. We present two constraint programming models that rely on a disjunctive scheduling representation of the problem. We also propose an iterative search heuristic to generate good feasible solutions for these models. Computational results on a set of … Read more