Algorithms for the power-$ Steiner tree problem in the Euclidean plane
We study the problem of constructing minimum power-$p$ Euclidean $k$-Steiner trees in the plane. The problem is to find a tree of minimum cost spanning a set of given terminals where, as opposed to the minimum spanning tree problem, at most $k$ additional nodes (Steiner points) may be introduced anywhere in the plane. The cost … Read more