Approximating the Two-Level Facility Location Problem Via a Quasi-Greedy Approach

We propose a {\em quasi-greedy} algorithm for approximating the classical uncapacitated $2$-level facility location problem ($2$-LFLP). Our algorithm, unlike the standard greedy algorithm, selects a sub-optimal candidate at each step. It also relates the minimization $2$-LFLP problem, in an interesting way, to the maximization version of the single level facility location problem. Another feature of … Read more

Streaming Cache Placement Problems: Complexity and Algorithms

Virtual private networks (VPN) are often used to distribute live content, such as video or audio streams, from a single source to a large number of destinations. Streaming caches or splitters are deployed in these multicast networks to allow content distribution without overloading the network. In this paper, we consider two combinatorial optimization problems that … Read more

When the greedy algorithm fails

We provide a characterization of the cases when the greedy algorithm may produce the unique worst possible solution for the problem of finding a minimum weight base in a uniform independence system when the weights are taken from a finite range. We apply this theorem to TSP and the minimum bisection problem. The practical message … Read more

Approximation Bounds for Quadratic Maximization with Semidefinite Programming Relaxation

In this paper, we consider a class of quadratic maximization problems. One important instance in that class is the famous quadratic maximization formulation of the max-cut problem studied by Goemans and Williamson. Since the problem is NP-hard in general, following Goemans and Williamson, we apply the approximation method based on the semidefinite programming (SDP) relaxation. … Read more

A Simple Clique Camouflaging Against Greedy Maximum Clique Heuristics

Taking a small graph, on which the randomized New-Best-In maximum clique heuristic fails to find the maximum clique, we construct on its basis a class of graphs exemplifying the inefficiency of SM greedy heuristics considered by Brockington and Culberson. We show that a 7(k+1)-vertex graph from this class is enough to provide a counterexample for … Read more

Domination Analysis of Combinatorial Optimization Problems.

We use the notion of domination ratio introduced by Glover and Punnen in 1997 to present a new classification of combinatorial optimization (CO) problems: $\DOM$-easy and $\DOM$-hard problems. It follows from results proved already in the 1970’s that {\tt min TSP} (both symmetric and asymmetric versions) is $\DOM$-easy. We prove that several CO problems are … Read more

A Note on Approximating the 2-Catalog Segmentation Problem

We present a $.73$-approximation algorithm for a disjoint $2$-Catalog Segmentation and $.63$-approximation algorithm for the joint version of the problem. Previously best known results are $.65$ and $.56$, respectively. The results are based on semidefinite programming and a subtle rounding method. CitationWorking Paper, Department of Management Sciences, Henry, B. Tippie College of Business, The University … Read more

A New Trust Region Technique for the Maximum Weight Clique Problem

A new simple generalization of the Motzkin-Straus theorem for the maximum weight clique problem is formulated and directly proved. Within this framework a new trust region heuristic is developed. In contrast to usual trust region methods, it regards not only the global optimum of a quadratic objective over a sphere, but also a set of … Read more

Anti-matroids

We introduce an anti-matroid as a family $\cal F$ of subsets of a ground set $E$ for which there exists an assignment of weights to the elements of $E$ such that the greedy algorithm to compute a maximal set (with respect to inclusion) in $\cal F$ of minimum weight finds, instead, the unique maximal set … Read more

Near-optimal solutions to large scale facility location problems

We investigate the solution of large scale instances of the capacitated and uncapacitated facility location problems. Let n be the number of customers and m the number of potential facility sites. For the uncapacitated case we solved instances of size m x n=3000 x 3000; for the capacitated case the largest instances were 1000 x … Read more