On the Complexity of Finding Locally Optimal Solutions in Bilevel Linear Optimization
\(\) We consider the theoretical computational complexity of finding locally optimal solutions to bilevel linear optimization problems (BLPs), from the leader’s perspective. We show that, for any constant \(c > 0\), the problem of finding a leader’s solution that is within Euclidean distance \(c^n\) of any locally optimal leader’s solution, where \(n\) is the total … Read more