Solving maximum cut problems by simulated annealing

This paper gives a straightforward implementation of simulated annealing for solving maximum cut problems and compares its performance to that of some existing heuristic solvers. The formulation used is classical, dating to a 1989 paper of Johnson, Aragon, McGeoch, and Schevon. This implementation uses no structure peculiar to the maximum cut problem, but its low … Read more

What Works Best When? A Systematic Evaluation of Heuristics for Max-Cut and QUBO

Though empirical testing is broadly used to evaluate heuristics, there are shortcomings with how it is often applied in practice. In a systematic review of Max-Cut and Quadratic Unconstrained Binary Optimization (QUBO) heuristics papers, we found only 4% publish source code, only 14% compare heuristics with identical termination criteria, and most experiments are performed with … Read more

Beam Search for integer multi-objective optimization

Beam search is a tree search procedure where, at each level of the tree, at most W nodes are kept. This results in a metaheuristic whose solving time is polynomial in W. Popular for single-objective problems, beam search has only received little attention in the context of multi-objective optimization. By introducing the concepts of oracle … Read more

Compromise Ratio with weighting functions in a Tabu Search multi-criteria approach to examination timetabling

University examination scheduling is a difficult and heavily administrative task, particularly when the number of students and courses is high. Changes in educational paradigms, an increase in the number of students, the aggregation of schools, more flexible curricula, among others, are responsible for an increase in the difficulty of the problem. As a consequence, there … Read more

A Multi-Layer Line Search Method to Improve the Initialization of Optimization Algorithms

We introduce a novel metaheuristic methodology to improve the initialization of a given deterministic or stochastic optimization algorithm. Our objective is to improve the performance of the considered algorithm, called core optimization algorithm, by reducing its number of cost function evaluations, by increasing its success rate and by boosting the precision of its results. In … Read more

A cluster-first route-second approach for the Swap Body Vehicle Routing Problem

The Swap Body Vehicle Routing Problem (SB-VRP) is a generalization of the classical Vehicle Routing Problem (VRP) where a particular structure as well as several operational aspects for the trucks composing the fleet are considered. This research has been motivated by the VeRoLog Solver Challenge 2014, organized together by VeRoLog and PTV group, aiming to … Read more

A Versatile Heuristic Approach for Generalized Hub Location Problems

The usability of hub location models heavily depends on an appropriate modelling approach for the economies of scale. Realistic hub location models require more sophisticated transport cost structures than the traditional flow-independent discount. We develop a general modelling scheme for such problems allowing the definition of complicated (non-linear) costs and constraints; its structure allows an … Read more

New Benchmark Instances for the Capacitated Vehicle Routing Problem

The recent research on the CVRP is being slowed down by the lack of a good set of benchmark instances. The existing sets suff er from at least one of the following drawbacks: (i) became too easy for current algorithms; (ii) are too arti cial; (iii) are too homogeneous, not covering the wide range of characteristics found … Read more

A hybrid Lagrangean metaheuristic for single machine scheduling problem with sequence-dependent setup times and due dates

In this article, a hybrid Lagrangean metaheuristic is proposed for single machine scheduling problems with sequence-dependent setup times and due dates. The objective function considered throughout this work, is to minimize the total tardiness. Related works and taxonomies for hybrid metaheuristics are analyzed, through a thorough historical overview. The proposed hybrid Lagrangean metaheuristic is a … Read more

Nonmonotone GRASP

A Greedy Randomized Adaptive Search Procedure (GRASP) is an iterative multistart metaheuristic for difficult combinatorial optimization problems. Each GRASP iteration consists of two phases: a construction phase, in which a feasible solution is produced, and a local search phase, in which a local optimum in the neighborhood of the constructed solution is sought. Repeated applications … Read more