A primal-dual nonlinear rescaling method with dynamic scaling parameter update

In this paper we developed a general primal-dual nonlinear rescaling method with dynamic scaling parameter update (PDNRD) for convex optimization. We proved the global convergence, established 1.5-Q-superlinear rate of convergence under the standard second order optimality conditions. The PDNRD was numerically implemented and tested on a number of nonlinear problems from COPS and CUTE sets. … Read more

Numerical experiments with an interior-exterior point method for nonlinear programming

The paper presents an algorithm for solving nonlinear programming problems. The algorithm is based on the combination of interior and exterior point methods. The latter is also known as the primal-dual nonlinear rescaling method. The paper shows that in certain cases when the interior point method fails to achieve the solution with the high level … Read more

Convergence analysis of a primal-dual interior-point method for nonlinear programming

We analyze a primal-dual interior-point method for nonlinear programming. We prove the global convergence for a wide class of problems under the standard assumptions on the problem. Citation Technical Report ORFE-04-07, Department of ORFE, Princeton University, Princeton, NJ 08544 Article Download View Convergence analysis of a primal-dual interior-point method for nonlinear programming

Constrained optimization in seismic reflection tomography: an SQP augmented Lagrangian approach

Seismic reflection tomography is a method for determining a subsurface velocity model from the traveltimes of seismic waves reflecting on geological interfaces. From an optimization viewpoint, the problem consists in minimizing a nonlinear least-squares function measuring the mismatch between observed traveltimes and those calculated by ray tracing in this model. The introduction of a priori … Read more

A sequential quadratic programming algorithm with a piecewise linear merit function

A sequential quadratic programming algorithm for solving nonlinear programming problems is presented. The new feature of the algorithm is related to the definition of the merit function. Instead of using one penalty parameter per iteration and increasing it as the algorithm progresses, we suggest that a new point is to be accepted if it stays … Read more

Benchmarking Optimization Software with COPS 3.0

We describe version 3.0 of the COPS set of nonlinearly constrained optimization problems. We have added new problems, as well as streamlined and improved most of the problems. We also provide a comparison of the FILTER, KNITRO, LOQO, MINOS, and SNOPT solvers on these problems. Citation Technical Report ANL/MCS-TM-273, Argonne National Laboratory, 02/04. Article Download … Read more

On the Relationship between Bilevel Decomposition Algorithms and Direct Interior-Point Methods

Engineers have been using \emph{bilevel decomposition algorithms} to solve certain nonconvex large-scale optimization problems arising in engineering design projects. These algorithms transform the large-scale problem into a bilevel program with one upper-level problem (the master problem) and several lower-level problems (the subproblems). Unfortunately, there is analytical and numerical evidence that some of these commonly used … Read more

On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming

We present a primal-dual interior-point algorithm with a filter line-search method for nonlinear programming. Local and global convergence properties of this method were analyzed in previous work. Here we provide a comprehensive description of the algorithm, including the feasibility restoration phase for the filter method, second-order corrections, and inertia correction of the KKT matrix. Heuristics … Read more

Solving nonconvex SDP problems of structural optimization with stability control

The goal of this paper is to formulate and solve structural optimization problems with constraints on the global stability of the structure. The stability constraint is based on the linear buckling phenomenon. We formulate the problem as a nonconvex semidefinite programming problem and introduce an algorithm based on the Augmented Lagrangian method combined with the … Read more

On the modeling and control of delamination processes

This paper is motivated by problem of optimal shape design of laminated elastic bodies. We use a recently introduced model of delamination, based on minimization of potential energy which includes the free (Gibbs-type) energy and (pseudo)potential of dissipative forces, to introduce and analyze a special mathematical program with equilibrium constraints. The equilibrium is governed by … Read more