Multidisciplinary Free Material Optimization

We present a mathematical framework for the so-called multidisciplinary free material optimization (MDFMO) problems, a branch of structural optimization in which the full material tensor is considered as a design variable. We extend the original problem statement by a class of generic constraints depending either on the design or on the state variables. Among the … Read more

Free Material Optimization with Fundamental Eigenfrequency Constraints.

The goal of this paper is to formulate and solve free material optimization problems with constraints on the smallest eigenfrequency of the optimal structure. A natural formulation of this problem as linear semidefinite program turns out to be numerically intractable. As an alternative, we propose a new approach, which is based on a nonlinear semidefinite … Read more

A Sequential Convex Semidefinite Programming Algorithm for Multiple-Load Free Material Optimization

A new method for the efficient solution of free material optimization problems is introduced. The method extends the sequential convex programming (SCP) concept to a class of optimization problems with matrix variables. The basic idea of the new method is to approximate the original optimization problem by a sequence of subproblems, in which nonlinear functions … Read more

On the solution of large-scale SDP problems by the modified barrier method using iterative solvers

When solving large-scale semidefinite programming problems by second-order methods, the storage and factorization of the Newton matrix are the limiting factors. For a particular algorithm based on the modified barrier method, we propose to use iterative solvers instead of the routinely used direct factorization techniques. The preconditioned conjugate gradient method proves to be a viable … Read more

Solving nonconvex SDP problems of structural optimization with stability control

The goal of this paper is to formulate and solve structural optimization problems with constraints on the global stability of the structure. The stability constraint is based on the linear buckling phenomenon. We formulate the problem as a nonconvex semidefinite programming problem and introduce an algorithm based on the Augmented Lagrangian method combined with the … Read more

PENNON – A Code for Convex Nonlinear and Semidefinite Programming

We introduce a computer program PENNON for the solution of problems of convex Nonlinear and Semidefinite Programming (NLP-SDP). The algorithm used in PENNON is a generalized version of the Augmented Lagrangian method, originally introduced by Ben-Tal and Zibulevsky for convex NLP problems. We present generalization of this algorithm to convex NLP-SDP problems, as implemented in … Read more

[PENNON – A Generalized Augmented Lagrangian Methodfor Semidefinite Programming

This article describes a generalization of the PBM method by Ben-Tal and Zibulevsky to convex semidefinite programming problems. The algorithm used is a generalized version of the Augmented Lagrangian method. We present details of this algorithm as implemented in a new code PENNON. The code can also solve second-order conic programming (SOCP) problems, as well … Read more