Constraint-Preconditioned Krylov Solvers for Regularized Saddle-Point Systems

We consider the iterative solution of regularized saddle-point systems. When the leading block is symmetric and positive semi-definite on an appropriate subspace, Dollar, Gould, Schilders, and Wathen (SIAM J. Matrix Anal. Appl., 28(1), 2006) describe how to apply the conjugate gradient (CG) method coupled with a constraint preconditioner, a choice that has proved to be … Read more

On the update of constraint preconditioners for regularized KKT systems

We address the problem of preconditioning sequences of regularized KKT systems, such as those arising in Interior Point methods for convex quadratic programming. In this case, Constraint Preconditioners (CPs) are very effective and widely used; however, when solving large-scale problems, the computational cost for their factorization may be high, and techniques for approximating them appear … Read more

Updating constraint preconditioners for KKT systems in quadratic programming via low-rank corrections

This work focuses on the iterative solution of sequences of KKT linear systems arising in interior point methods applied to large convex quadratic programming problems. This task is the computational core of the interior point procedure and an efficient preconditioning strategy is crucial for the efficiency of the overall method. Constraint preconditioners are very effective … Read more

On mutual impact of numerical linear algebra and large-scale optimization with focus on interior point methods

The solution of KKT systems is ubiquitous in optimization methods and often dominates the computation time, especially when large-scale problems are considered. Thus, the effective implementation of such methods is highly dependent on the availability of effective linear algebra algorithms and software, that are able, in turn, to take into account specific needs of optimization. … Read more