Strong Formulations and Algorithms for Regularized A-Optimal Design

We study the Regularized A-Optimal Design (RAOD) problem, which selects a subset of \(k\) experiments to minimize the inverse of the Fisher information matrix, regularized with a scaled identity matrix. RAOD has broad applications in Bayesian experimental design, sensor placement, and cold-start recommendation. We prove its NP-hardness via a reduction from the independent set problem. … Read more

Quadratic Outer Approximation for Convex Integer Programming

We present a quadratic outer approximation scheme for solving general convex integer programs, where suitable quadratic approximations are used to underestimate the objective function instead of classical linear approximations. As a resulting surrogate problem we consider the problem of minimizing a function given as the maximum of finitely many convex quadratic functions having the same … Read more

Some Properties of Convex Hulls of Integer Points Contained in General Convex Sets

In this paper, we study properties of general closed convex sets that determine the closed-ness and polyhedrality of the convex hull of integer points contained in it. We first present necessary and sufficient conditions for the convex hull of integer points contained in a general convex set to be closed. This leads to useful results … Read more