Tight cycle relaxations for the cut polytope

We study the problem of optimizing an arbitrary weight function w’z over the metric polytope of a graph G=(V,E), a well-known relaxation of the cut polytope. We define the signed graph (G, E^-), where E^- consists of the edges of G having negative weight. We characterize the sign patterns of the weight vector w such … Read more

Computing the Grothendieck constant of some graph classes

Given a graph $G=([n],E)$ and $w\in\R^E$, consider the integer program ${\max}_{x\in \{\pm 1\}^n} \sum_{ij \in E} w_{ij}x_ix_j$ and its canonical semidefinite programming relaxation ${\max} \sum_{ij \in E} w_{ij}v_i^Tv_j$, where the maximum is taken over all unit vectors $v_i\in\R^n$. The integrality gap of this relaxation is known as the Grothendieck constant $\ka(G)$ of $G$. We present … Read more

Lower bound for the number of iterations in semidefinite hierarchies for the cut polytope

Hierarchies of semidefinite relaxations for $0/1$ polytopes have been constructed by Lasserre (2001a) and by Lov\’asz and Schrijver (1991), permitting to find the cut polytope of a graph on $n$ nodes in $n$ steps. We show that $\left\lceil {n\over 2} \right\rceil$ iterations are needed for finding the cut polytope of the complete graph $K_n$. Citation … Read more

Semidefinite relaxations for Max-Cut

We compare several semidefinite relaxations for the cut polytope obtained by applying the lift and project methods of Lov\’asz and Schrijver and of Lasserre. We show that the tightest relaxation is obtained when aplying the Lasserre construction to the node formulation of the max-cut problem. This relaxation $Q_t(G)$ can be defined as the projection on … Read more

A comparison of the Sherali-Adams, Lov\’asz-Schrijver and Lasserre relaxations for sh-1$ programming

Sherali and Adams \cite{SA90}, Lov\’asz and Schrijver \cite{LS91} and, recently, Lasserre \cite{Las01b} have proposed lift and project methods for constructing hierarchies of successive linear or semidefinite relaxations of a $0-1$ polytope $P\subseteq \oR^n$ converging to $P$ in $n$ steps. Lasserre’s approach uses results about representations of positive polynomials as sums of squares and the dual … Read more

Strengthened Semidefinite Relaxations via a Second Lifting for the Max-Cut Problem

In this paper we study two strengthened semidefinite programming relaxations for the Max-Cut problem. Our results hold for every instance of Max-Cut; in particular, we make no assumptions about the edge weights. We prove that the first relaxation provides a strengthening of the Goemans-Williamson relaxation. The second relaxation is a further tightening of the first … Read more