The 1-persistency of the clique relaxation of the stable set polytope: a focus on some forbidden structures
A polytope $P\subseteq [0,1]^n$ is said to have the \emph{persistency} property if for every vector $c\in \R^{n}$ and every $c$-optimal point $x\in P$, there exists a $c$-optimal integer point $y\in P\cap \{0,1\}^n$ such that $x_i = y_i$ for each $i \in \{1,\dots,n\}$ with $x_i \in \{0,1\}$. In this paper, we consider a relaxation of the … Read more