Exact and Heuristic Solution Approaches for Busy Time Minimization in Temporal Bin Packing

Given a set of jobs (or items), each of which being characterized by its resource demand and its lifespan, and a sufficiently large number of identical servers (or bins), the busy time minimization problem (BTMP) requires to find a feasible schedule (i.e., a jobs-to-servers assignment) having minimum overall power-on time. Although being linked to the … Read more

Worst-Case Analysis of Heuristic Approaches for the Temporal Bin Packing Problem with Fire-Ups

We consider the temporal bin packing problem with fire-ups (TBPP-FU), a branch of operations research recently introduced in multi-objective cloud computing. In this scenario, any item is equipped with a resource demand and a lifespan meaning that it requires the bin capacity only during that time interval. We then aim at finding a schedule minimizing … Read more

Theoretical Insights and a New Class of Valid Inequalities for the Temporal Bin Packing Problem with Fire-Ups

The temporal bin packing problem with fire-ups (TBPP-FU) is a two-dimensional packing problem where one geometric dimension is replaced by a time horizon. The given items (jobs) are characterized by a resource consumption, that occurs exclusively during an activity interval, and they have to be placed on servers so that the capacity constraint is respected … Read more

Variable and constraint reduction techniques for the temporal bin packing problem with fire-ups

The aim of this letter is to design and computationally test several improvements for the compact integer linear programming (ILP) formulations of the temporal bin packing problem with fire-ups (TBPP-FU). This problem is a challenging generalization of the classical bin packing problem in which the items, interpreted as jobs of given weight, are active only … Read more

A top-down cutting approach for modeling the constrained two- and three-dimensional guillotine cutting problems

In this paper, we address the Constrained Two-dimensional Guillotine Cutting Problem (C2GCP) and the Constrained Three-dimensional Guillotine Cutting Problem (C3GCP). These problems consist of cutting a rectangular two-/three-dimensional object with orthogonal guillotine cuts to produce ordered rectangular two-/three-dimensional items seeking the most valuable subset of items cut. They often appear in manufacturing settings that cut … Read more

Two-stage and one-group two-dimensional guillotine cutting problems with defects: a CP-based algorithm and ILP formulations

We address two variants of the two-dimensional guillotine cutting problem that appear in different manufacturing settings that cut defective objects. Real-world applications include the production of flat glass in the glass industry and the cutting of wooden boards with knotholes in the furniture industry. These variants assume that there are several defects in the object, … Read more

Compact Integer Linear Programming Formulations for the Temporal Bin Packing Problem with Fire-Ups

In this article we examine a specific version of the temporal bin packing problem (TBPP) that occurs in job-to-server scheduling. The TBPP represents a generalization of the well-known bin packing problem (BPP) with respect to an additional time dimension, and it requires to find the minimum number of bins (servers) to accommodate a given list … Read more

Mathematical Models and Approximate Solution Approaches for the Stochastic Bin Packing Problem

We consider the (single-stage) stochastic bin packing problem (SBPP) which is based on a given list of items the sizes of which are represented by stochastically independent random variables. The SBPP requires to determine the minimum number of unit capacity bins needed to pack all the items, such that for each bin the probability of … Read more

A Note on the Integrality Gap of Cutting and Skiving Stock Instances: Why 4/3 is an Upper Bound for the Divisible Case?

In this paper, we consider the (additive integrality) gap of the cutting stock problem (CSP) and the skiving stock problem (SSP). Formally, the gap is defined as the difference between the optimal values of the ILP and its LP relaxation. For both, the CSP and the SSP, this gap is known to be bounded by … Read more

Improved Flow-based Formulations for the Skiving Stock Problem

Thanks to the rapidly advancing development of (commercial) MILP software and hardware components, pseudo-polynomial formulations have been established as a powerful tool for solving cutting and packing problems in recent years. In this paper, we focus on the one-dimensional skiving stock problem (SSP), where a given inventory of small items has to be recomposed to … Read more