New Formulations and Pricing Mechanisms for Stochastic Electricity Market Clearing Problem

We present new formulations of the stochastic electricity market clearing problem based on the principles of stochastic programming. Previous analyses have established that the canonical stochastic programming model effectively captures the relationship between the day-ahead and real-time dispatch and prices. The resulting quantities exhibit desirable guarantees of revenue adequacy, cost recovery, and price distortion in … Read more

Copositive Duality for Discrete Energy Markets

Optimization problems with discrete decisions are nonconvex and thus lack strong duality, which limits the usefulness of tools such as shadow prices. It was shown in Burer (2009) that mixed-binary quadratic programs can be written as completely positive programs, which are convex. Completely positive reformulations of discrete optimization problems therefore have strong duality if a … Read more

Enhancements of Extended Locational Marginal Pricing – Advancing Practical Implementation

Price formation is critical to efficient wholesale electricity markets that support reliable operation and efficient investment. The Midcontinent Independent System Operator (MISO) developed the Extended Locational Marginal Pricing (ELMP) with the goal of more completely reflecting resource costs and generally improving price formation to better incent market participation. MISO developed ELMP based on the mathematical … Read more

An exact solution method for binary equilibrium problems with compensation and the power market uplift problem

We propose a novel method to fi nd Nash equilibria in games with binary decision variables by including compensation payments and incentive-compatibility constraints from non-cooperative game theory directly into an optimization framework in lieu of using first order conditions of a linearization, or relaxation of integrality conditions. The reformulation off ers a new approach to obtain and … Read more

Using EPECs to model bilevel games in restructured electricity markets

We study a bilevel noncooperative game-theoretic model of restructured electricity markets, with locational marginal prices. Each player in this game faces a bilevel optimization problem that we remodel as a mathematical program with equilibrium constraints, MPEC. The corresponding game is an example of an EPEC, equilibrium problem with equilibrium constraints. We establish sufficient conditions for … Read more