Advancements in the computation of enclosures for multi-objective optimization problems

A central goal for multi-objective optimization problems is to compute their nondominated sets. In most cases these sets consist of infinitely many points and it is not a practical approach to compute them exactly. One solution to overcome this problem is to compute an enclosure, a special kind of coverage, of the nondominated set. One … Read more

A hybrid patch decomposition approach to compute an enclosure for multi-objective mixed-integer convex optimization problems

In multi-objective mixed-integer convex optimization multiple convex objective functions need to be optimized simultaneously while some of the variables are only allowed to take integer values. In this paper we present a new algorithm to compute an enclosure of the nondominated set of such optimization problems. More precisely, we decompose the multi-objective mixed-integer convex optimization … Read more

On implementation details and numerical experiments for the HyPaD algorithm to solve multi-objective mixed-integer convex optimization problems

In this paper we present insights on the implementation details of the hybrid patch decomposition algorithm (HyPaD) for convex multi-objective mixed-integer optimization problems. We discuss how to implement the SNIA procedure which is basically a black box algorithm in the original work by Eichfelder and Warnow. In addition, we present and discuss results for various … Read more

Limit sets in global multiobjective optimization

Inspired by the recently introduced branch-and-bound method for continuous multiobjective optimization problems from G. Eichfelder, P. Kirst, L. Meng, O. Stein, A general branch-and-bound framework for continuous global multiobjective optimization, Journal of Global Optimization, 80 (2021) 195-227, we study for a general class of branch-and-bound methods in which sense the generated terminal enclosure and the … Read more

An approximation algorithm for multi-objective optimization problems using a box-coverage

For a continuous multi-objective optimization problem, it is usually not a practical approach to compute all its nondominated points because there are infinitely many of them. For this reason, a typical approach is to compute an approximation of the nondominated set. A common technique for this approach is to generate a polyhedron which contains the … Read more