Optimal Control of Differential Inclusions

This paper is devoted to optimal control of dynamical systems governed by differential inclusions in both frameworks of Lipschitz continuous and discontinuous velocity mappings. The latter framework mostly concerns a new class of optimal control problems described by various versions of the so-called sweeping/Moreau processes that are very challenging mathematically and highly important in applications … Read more

Variational Analysis and Optimization of Sweeping Processes with Controlled Moving Sets

This paper briefly overviews some recent and very fresh results on a rather new class of dynamic optimization problems governed by the so-called sweeping (Moreau) processes with controlled moving sets. Uncontrolled sweeping processes have been known in dynamical systems and applications starting from 1970s while control problems for them have drawn attention of mathematicians, applied … Read more

Two-level value function approach to nonsmooth optimistic and pessimistic bilevel programs

The authors’ paper in Ref. [5], was the first one to provide detailed optimality conditions for pessimistic bilevel optimization. The results there were based on the concept of the two-level optimal value function introduced and analyzed in Ref. [4], for the case of optimistic bilevel programs. One of the basic assumptions in both of these … Read more

Variational Analysis of Circular Cone Programs

This paper conducts variational analysis of circular programs, which form a new class of optimization problems in nonsymmetric conic programming important for optimization theory and its applications. First we derive explicit formulas in terms of the initial problem data to calculate various generalized derivatives/coderivatives of the projection operator associated with the circular cone. Then we … Read more

New Fractional Error Bounds for Nonconvex Polynomial Systems with Applications to Holderian Stability in Optimization and Spectral Theory of Tensors

In this paper we derive new fractional error bounds for nonconvex polynomial systems with exponents explicitly determined by the dimension of the underlying space and the number/degree of the involved polynomials. The results obtained do not require any regularity assumptions and resolve, in particular, some open questions posed in the literature. The developed techniques are … Read more

Second-Order Variational Analysis in Conic Programming with Applications to Optimality and Stability

This paper is devoted to the study of a broad class of problems in conic programming modeled via parameter-dependent generalized equations. In this framework we develop a second-order generalized di erential approach of variational analysis to calculate appropriate derivatives and coderivatives of the corresponding solution maps. These developments allow us to resolve some important issues related … Read more

Partial Second-Order Subdifferentials in Variational Analysis and Optimization

This paper presents a systematic study of partial second-order subdifferentials for extended-real-valued functions, which have already been applied to important issues of variational analysis and constrained optimization in finite-dimensional spaces. The main results concern developing extended calculus rules for these second-order constructions in both finite-dimensional and infinite-dimensional frameworks. We also provide new applications of partial … Read more

Holder Metric Subregularity with Applications to Proximal Point Method

This paper is mainly devoted to the study and applications of H\”older metric subregularity (or metric $q$-subregularity of order $q\in(0,1]$) for general set-valued mappings between infinite-dimensional spaces. Employing advanced techniques of variational analysis and generalized differentiation, we derive neighborhood and pointbased sufficient conditions as well as necessary conditions for $q$-metric subregularity with evaluating the exact … Read more

Subdifferentials of nonconvex supremum functions and their applications to semi-infinite and infinite programs with Lipschitzian data

The paper is devoted to the subdifferential study and applications of the supremum of uniformly Lipschitzian functions over arbitrary index sets with no topology. Based on advanced techniques of variational analysis, we evaluate major subdifferentials of the supremum functions in the general framework of Asplund (in particular, reflexive) spaces with no convexity or relaxation assumptions. … Read more