On the Convergence of the Entropy-Exponential Penalty Trajectories and Generalized Proximal Point Methods in Semidefinite Optimization

The convergence of primal and dual central paths associated to entropy and exponential functions, respectively, for semidefinite programming problem are studied in this paper. As an application, the proximal point method with the Kullback-Leibler distance applied to semidefinite programming problems is considered, and the convergence of primal and dual sequences is proved. Citation Journal of … Read more

Central Paths in Semidefinite Programming, Generalized Proximal Point Method and Cauchy Trajectories in Riemannian Manifolds

The relationships among central path in the context of semidefinite programming, generalized proximal point method and Cauchy trajectory in Riemannian manifolds is studied in this paper. First it is proved that the central path associated to the general function is well defined. The convergence and characterization of its limit point is established for functions satisfying … Read more

Dual Convergence of the Proximal Point Method with Bregman Distances for Linear Programming

In this paper we consider the proximal point method with Bregman distance applied to linear programming problems, and study the dual sequence obtained from the optimal multipliers of the linear constraints of each subproblem. We establish the convergence of this dual sequence, as well as convergence rate results for the primal sequence, for a suitable … Read more