A Proximal Interior Point Algorithm with Applications to Image Processing

In this article, we introduce a new proximal interior point algorithm (PIPA). This algorithm is able to handle convex optimization problems involving various constraints where the objective function is the sum of a Lipschitz differentiable term and a possibly nonsmooth one. Each iteration of PIPA involves the minimization of a merit function evaluated for decaying … Read more

Robust Near-Separable Nonnegative Matrix Factorization Using Linear Optimization

Nonnegative matrix factorization (NMF) has been shown recently to be tractable under the separability assumption, under which all the columns of the input data matrix belong to the convex cone generated by only a few of these columns. Bittorf, Recht, R\’e and Tropp (`Factoring nonnegative matrices with linear programs’, NIPS 2012) proposed a linear programming … Read more

Fast and Robust Recursive Algorithms for Separable Nonnegative Matrix Factorization

In this paper, we study the nonnegative matrix factorization problem under the separability assumption (that is, there exists a cone spanned by a small subset of the columns of the input nonnegative data matrix containing all columns), which is equivalent to the hyperspectral unmixing problem under the linear mixing model and the pure-pixel assumption. We … Read more

An Alternating Direction Algorithm for Matrix Completion with Nonnegative Factors

This paper introduces a novel algorithm for the nonnegative matrix factorization and completion problem, which aims to nd nonnegative matrices X and Y from a subset of entries of a nonnegative matrix M so that XY approximates M. This problem is closely related to the two existing problems: nonnegative matrix factorization and low-rank matrix completion, … Read more