Spanning and Splitting: Integer Semidefinite Programming for the Quadratic Minimum Spanning Tree Problem

In the quadratic minimum spanning tree problem (QMSTP) one wants to find the minimizer of a quadratic function over all possible spanning trees of a graph. We give two formulations of the QMSTP as mixed-integer semidefinite programs exploiting the algebraic connectivity of a graph. Based on these formulations, we derive a doubly nonnegative relaxation for … Read more

The Chvátal-Gomory Procedure for Integer SDPs with Applications in Combinatorial Optimization

In this paper we study the well-known Chvátal-Gomory (CG) procedure for the class of integer semidefinite programs (ISDPs). We prove several results regarding the hierarchy of relaxations obtained by iterating this procedure. We also study different formulations of the elementary closure of spectrahedra. A polyhedral description of the elementary closure for a specific type of … Read more