The Chvátal-Gomory Procedure for Integer SDPs with Applications in Combinatorial Optimization

In this paper we study the well-known Chvátal-Gomory (CG) procedure for the class of integer semidefinite programs (ISDPs). We prove several results regarding the hierarchy of relaxations obtained by iterating this procedure. We also study different formulations of the elementary closure of spectrahedra. A polyhedral description of the elementary closure for a specific type of … Read more

Lower bounding procedure for the Asymmetric Quadratic Traveling Salesman Problem

In this paper we consider the Asymmetric Quadratic Traveling Salesman Problem. Given a directed graph and a function that maps every pair of consecutive arcs to a cost, the problem consists in finding a cycle that visits every vertex exactly once and such that the sum of the costs is minimum. We propose an extended … Read more

An extended approach for lifting clique tree inequalities

We present a new lifting approach for strengthening arbitrary clique tree inequalities that are known to be facet defining for the symmetric traveling salesman problem in order to get stronger valid inequalities for the symmetric quadratic traveling salesman problem (SQTSP). Applying this new approach to the subtour elimination constraints (SEC) leads to two new classes … Read more